Algorithms for NLP

Language Modeling III

Taylor Berg-Kirkpatrick – CMU

Slides: Dan Klein – UC Berkeley

- Closed address hashing
 - Resolve collisions with chains
 - Easier to understand but bigger
- Open address hashing
 - Resolve collisions with probe sequences
 - Smaller but easy to mess up
- Direct-address hashing
 - No collision resolution
 - Just eject previous entries
 - Not suitable for core LM storage

Got 3 numbers under 2²⁰ to store?

Fits in a primitive 64-bit long

c(the) = 23135851162 < 2³⁵

35 bits to represent integers between 0 and 2^{35}

unique counts = $770000 < 2^{20}$

20 bits to represent ranks of all counts

So Far

Word indexer

word id

cat	0
the	1
was	2
ran	3

N-gram encoding scheme

unigram: f(id) = id

bigram: $f(id_1, id_2) = ?$

trigram: $f(id_1, id_2, id_3) = ?$

<u>Count DB</u> bigram

trigram

rank	freg
0	1
1	2
2	51
3	233

unigram		bigram			
16078820	0381		16078820	0381	
15176595	0051		15176595	0051	
15176583	0076		15176583	0076	
16576628	0021		16576628	0021	
·	<u> </u>			·	
15176600	0018		15176600	0018	
16089320	0171		16089320	0171	
15176583	0039		15176583	0039	2
14980420	0030		14980420	0030	
17 <u></u> 73	· · · · · · · · · · · · · · · · · · ·			<u></u>	
15020330	0482		15020330	0482	

16078820	0381
15176595	0051
15176583	0076
—	
16576628	0021
_	· · · · · ·
15176600	0018
16089320	0171
15176583	0039
14980420	0030
<u> </u>	<u> </u>
15020330	0482

Hashing vs Sorting

Sorting		auory.	15174505	Hashing	
c	val	query.	13170373	с	val
15176583	0076			16078820	0381
15170505	0070			15176595	0051
15176595	0051			15176583	0076
15176600	0018			19170303	0070
16078820	0381			14574400	
16089320	0171			16576628	0021
16576628	0021			15176600	0018
16980420	0030			16089320	0171
17020330	0482			15176583	0039
17176583	0039			14980420	0030
				15020330	0482

Maximum Entropy Models

N-grams don't combine multiple sources of evidence well

P(construction | After the demolition was completed, the)

Here:

- "the" gives syntactic constraint
- "demolition" gives semantic constraint
- Unlikely the interaction between these two has been densely observed in this specific n-gram
- We'd like a model that can be more statistically efficient

Some Definitions

INPUTS	\mathbf{x}_i	close the
CANDIDATE SET	$\mathcal{Y}(\mathbf{x})$	{door, table,}
CANDIDATES	У	table
TRUE OUTPUTS	\mathbf{y}_i^*	door
FEATURE VECTORS	f(x, y) $x_{-1}="the" \land y="$	[00100010000] (door" (door"
	X_1=	$= "the" \land y = "table" \qquad y occurs in x$

• N-Grams
$$x_{-1} = "the" \land y = "doors"$$

Skips
$$x_{-2}$$
="closing" \land y="doors"

• Lemmas
$$x_{-2} = close'' \wedge y = door''$$

• Caching *y* occurs in *x*

Data: Feature Impact

Features	Train Perplexity	Test Perplexity
3 gram indicators	241	350
1-3 grams	126	172
1-3 grams + skips	101	164

Exponential Form

f(x, y)

Weights w Features

- Linear score $\mathbf{w}^{ op} \mathbf{f}(\mathbf{x},\mathbf{y})$
- Unnormalized probability

 $\mathsf{P}(y|x,w) \propto \mathsf{exp}(w^\top f(x,y))$

Probability

$$\mathsf{P}(\mathbf{y}|\mathbf{x}, \mathbf{w}) = \frac{\exp(\mathbf{w}^{\top} \mathbf{f}(\mathbf{x}, \mathbf{y}))}{\sum_{\mathbf{y}'} \exp(\mathbf{w}^{\top} \mathbf{f}(\mathbf{x}, \mathbf{y}'))}$$

Likelihood Objective

Model form:

$$P(y|x,w) = \frac{\exp(w^{\top}f(x,y))}{\sum_{y'}\exp(w^{\top}f(x,y'))}$$

Log-likelihood of training data

$$L(w) = \log \prod_{i} P(y_i^* | x_i, w) = \sum_{i} \log \left(\frac{\exp(w^\top f(x_i, y_i^*))}{\sum_{y'} \exp(w^\top f(x_i, y'))} \right)$$
$$= \sum_{i} \left(w^\top f(x_i, y_i^*) - \log \sum_{y'} \exp(w^\top f(x_i, y')) \right)$$

Training

- 1990's: Specialized methods (e.g. iterative scaling)
- 2000's: General-purpose methods (e.g. conjugate gradient)

2010's: Online methods (e.g. stochastic gradient)

What Does LL Look Like?

- Example
 - Data: xxxy
 - Two outcomes, x and y
 - One indicator for each
 - Likelihood

$$\log\left(\left(\frac{e^x}{e^x+e^y}\right)^3\times\frac{e^y}{e^x+e^y}\right)$$

Convex Optimization

• The maxent objective is an unconstrained convex problem

 $L(\mathbf{w})$

One optimal value*, gradients point the way

Gradients

$$L(\mathbf{w}) = \sum_{i} \left(\mathbf{w}^{\top} \mathbf{f}(\mathbf{x}_{i}, \mathbf{y}_{i}^{*}) - \log \sum_{\mathbf{y}} \exp(\mathbf{w}^{\top} \mathbf{f}(\mathbf{x}_{i}, \mathbf{y})) \right)$$

Count of features under target labels

Expected count of features under model predicted label distribution

Gradient Ascent

 The maxent objective is an unconstrained optimization problem

 $L(\mathbf{w})$

Gradient Ascent

- Basic idea: move uphill from current guess
- Gradient ascent / descent follows the gradient incrementally
- At local optimum, derivative vector is zero
- Will converge if step sizes are small enough, but not efficient
- All we need is to be able to evaluate the function and its derivative

(Quasi)-Newton Methods

2nd-Order methods: repeatedly create a quadratic approximation and solve it

 $L(\mathbf{w})$

 $L(\mathbf{w}_0) + \nabla L(\mathbf{w})^\top (\mathbf{w} - \mathbf{w}_0) + (\mathbf{w} - \mathbf{w}_0)^\top \nabla^2 L(\mathbf{w}) (\mathbf{w} - \mathbf{w}_0)$

 E.g. LBFGS, which tracks derivative to approximate (inverse) Hessian

Regularization

Regularization Methods

Early stopping

L1: L(w)-|w|

- Early stopping: don't do this
- L2: weights stay small but non-zero

- L1: many weights driven to zero
 - Good for sparsity
 - Usually bad for accuracy for NLP

Scaling

$$L(\mathbf{w}) = \sum_{i} \left(\mathbf{w}^{\top} \mathbf{f}(\mathbf{x}_{i}, \mathbf{y}_{i}^{*}) - \log \sum_{\mathbf{y}} \exp(\mathbf{w}^{\top} \mathbf{f}(\mathbf{x}_{i}, \mathbf{y})) \right)$$

Big normalization terms

Lots of data points

Hierarchical Prediction

Hierarchical prediction / softmax [Mikolov et al 2013]

- Noise-Contrastive Estimation [Mnih, 2013]
- Self-Normalization [Devlin, 2014]

Stochastic Gradient

• View the gradient as an average over data points

$$\frac{\partial L(\mathbf{w})}{\partial \mathbf{w}} = \frac{1}{N} \sum_{i} \left(\mathbf{f}(\mathbf{x}_{i}, \mathbf{y}_{i}^{*}) - \sum_{\mathbf{y}} P(\mathbf{y}|\mathbf{x}_{i}) \mathbf{f}(\mathbf{x}_{i}, \mathbf{y}) \right)$$

Stochastic gradient: take a step each example (or mini-batch)

$$\frac{\partial L(\mathbf{w})}{\partial \mathbf{w}} \approx \frac{1}{1} \left(\mathbf{f}(\mathbf{x}_i, \mathbf{y}_i^*) - \sum_{\mathbf{y}} P(\mathbf{y} | \mathbf{x}_i) \mathbf{f}(\mathbf{x}_i, \mathbf{y}) \right)$$

Substantial improvements exist, e.g. AdaGrad (Duchi, 11)

Other Methods

Neural Net LMs

Image: (Bengio et al, 03)

Maxent LM

$$\mathsf{P}(\mathbf{y}|\mathbf{x},\mathbf{w}) \propto \mathsf{exp}(\mathbf{w}^{\top}\mathbf{f}(\mathbf{x},\mathbf{y}))$$

Neural Net LM

$$\mathsf{P}(\mathbf{y}|\mathbf{x},\mathbf{w}) \propto \exp\left(B\sigma\left(Af(x)\right)\right)$$

 σ nonlinear, e.g. tanh

Want a model over completions y given a context x:

$$P(y|x)=P($$
 close the door | close the $)$

- Want to characterize the important aspects of y = (v,x) using a feature function f
- F might include
 - Indicator of v (unigram)
 - Indicator of v, previous word (bigram)
 - Indicator whether v occurs in x (cache)
 - Indicator of v and each non-adjacent previous word

• .